Instituto Superior de Economia e Gestao

METHOD OF MOMENTS AND PERCENTILE MATCHING

Random sample (X,,X,, -+, X, ) where all n observations came from the same parametric distribution,

F(x18). 8 is a vector (length p) of unknown parameters.

Let 1, (0) = E(Xk | 0). Using a random sample of independent observations, the empirical estimate of

n k

i1

the kth moment is /i, =J—j, i.e. the kth moment of the sample (kth empirical moment).
n

Definition 13.1 — A method of moment estimate of € is any solution of the p equations y, (0) = I,
k=12,---,p.

Comments:

o Although definition 13.1 can be generalized to consider any set of moments, results are usually
better when using the smallest positive integer moments.

o Sometime higher moments are needed to solve the system (for instance X ~U(-6,0))

o Itis necessary to check that the relevant moments exist.

o There is no guarantee that the equations will have a solution or, if there is a solution, that it will be
unigque
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Example 13.1 — Use the method of moments to estimate parameters for the exponential, gamma and
Pareto distributions for Data Set B from chapter 11.

The exponential distribution has one parameter but the Pareto and the Gamma have 2 parameters
each, so we will need 2 empirical moments.

20 20 o

~ 7 Zj:l Y Zj:l o
20

i, = 0 =x=1424.4 and [, = =13238441.9

Exponential distribution: E(X) =26, then 0 =1424.4

Gamma Distribution: E(X)=a8, a>1; E(X*) = 0{(0{+1)¢92, a > 2, then we must solve the system

a0 =1424.4 I @=0.181
. The solutionis < . )
a'(a'+1)6?2 =13238441.9 HHon 0= 142~4'4 =7869.61
o
E(X)= 4 4 =1424.4
o (a-1) (a-1) G =2.442
Pareto distribution: < 5 . Then < 5 -
) 26 26 6 =2053.985
E(X")= =13238441.9
(a-1)(a-2) k(0:—1)(6{—2)
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Estimated distributions
0@912 ................................................................................................
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Exponential Gamma Pareto
Pr(X >1000) = 0.4956 0.2686 0.3796
Pr(X > 5000) = 0.0299 0.0850 0.0491
Pr(X >50000)= | 5-69x107 6.73%107° 3.73%107
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Percentile matching estimation

* Let z,(6) be the 100g% percentile of the random variable X, that is, F(ﬂ'g (6)] 6?) =g.If Fis
continuous this equation will have, at least, one solution. The empirical estimate of this percentile is 7,

the corresponding percentile of the random variable.

e Definition 13.2 — A percentile matching estimate of @ is any solution of the p equations 7T, (@) = frg

k’

k=12,--,p, where 81,8258, arep arbitrarily chosen percentiles. From the definition of percentile,
the equations can be written as F(f[gk I 6?) =g, k=12,---,p.

e Comments:
o There is no guarantee that the equations will have a solution or, if there is a solution, that the
solution is unique;
o For discrete random variables percentiles are not always well defined;

III

o Except for the median, there is no “consensual” solution to compute empirical percentiles. Hyndman
and Fan (1996) present nine different methods and the function quantile of the R program allows us
to get the percentiles using any of these methods. In this course we will use Definition 13.3 (type=6

for the quantile function when using R)
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Definition 13.3 — The smoothed empirical estimate of a percentile is found by
£, =(0—=h)x +hx ., where j=|(n+1)g |, h=(n+1)g—j,| |indicatesthe greatest integer function

and x,, < X, < X3 <0< X, are the order statistics from the sample.

e Comments:
o Unless the sample has two or more data points with the same values, no two percentiles will have

the same value.
o We can only estimate percentile for 1/ (n+1)< g<n/(n+1).

o The choice of which percentiles to use leads to different estimates. This is a strong point against the
percentile matching method except when there is a reason to choose a particular set of percentiles.

e Example 13.2 — Use percentile matching to estimate parameters for the exponential and Pareto

distribution for Data set B.
Without more information the choice of the percentiles is quite arbitrary. We will follow Loss Models.

Exponential: use the median (the parameter is the mean, i.e. a localization parameter).
Sample median: 7, =0.5x384 +0.5x457 =420.5
We must solve the equation: 0.5= F(%,,16) < 0.5=1-exp(-420.5/8) < 6 =606.65

5
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Pareto: use the 30" and the 80" percentiles.

30" j=[21x0.3|=6; h=21x03-6=0.3; #,, =0.7x161+0.3x243=185.6

80™: j=]21x0.8|=16; h=21x0.8-16=0.8; #,, =0.2x1193+0.8x1340=1310.6

The equations are

0.3=F(85.610,x) o
0.8=F(1310.616,) 0
0=

That is <

Q=

In(0.2)

6

In(0.7)

In(@) —In(185.6 + 0)
N R
_ In(6)—In(1310.6+ &)

1n(0.7)

In(8) —In(185.6 + )

This system can be solved numerically.

0.7=| ———
[185.6+9]

=%

a

In(0.7) = dln[

1310.6+8

Q=

185.6+éj

In(0.2) =&In LA
1310.6 +6

In(0.7)
In(6) —In(185.6+ H)

In(0.2) _In(9)~In(1310.6+6) _,

1n(0.7)

In(@)—In(185.6+8)
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Using Excel’s solver we obtain 0 =715.0315 for the second equation and, reporting this value in the
first equation we get & =1.545589 (see next slide)

Of course the choice of different percentiles leads to different estimates.

Exercise: Use percentiles 0.1 and 0.9, obtain  and &, and comment.
Using R

> modell=function(theta){

+ log(0.2)/log(0.7)-(log(theta)-log(1310.6+theta))/(log(theta)-log(185.6+theta))
+ }

> uniroot(modell,c(1,10000)) # package rootSolve

Sroot

[1] 715.032

Sf.root

[1] 2.833289e-13

Siter

[1]9

Sestim.prec

[1] 6.103516e-05
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Using EXCEL’s solver

= Solver Paramet > -
A S olver Parameters A B
1 1
it %4 Bl | 2 Thet 715.0332
> Theta 10 &l | 2 Theta
5 To: ) Max ) Min @ Value Of: o :
a Equation -2.02E-06
4 Equ aﬁﬂn 2870072 By Chanaging Variable Cells:
\eBs2 >
< s Alpha 1.545592
6 A|pha 0.119952 Subject to the Constraints: ==
=l - l Add ]
l Change ]
l Delete ]
l Reset Al ]
- l Load/Save ]
Make Unconstrained Variables Mon-Megative
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MAXIMUM LIKELIHOOD ESTIMATION

e Why ML estimation?

o More efficient estimators

o To cover some annoying cases: An important limitation of moment and percentile matching
estimators is that the observations are from the same random variable. If, for instance, half the
observations have a deductible of 50 and the other half a deductible of 100 it is not clear to what
the sample mean should be equated.

o More calculus involved

o Sometimes ML estimators are quite sensitive to “extreme” observations

® To use Maximum Likelihood Estimators
o We must have a data set with n events, A,A,,---,A, , where AJ. is whatever was observed for the

jth observation (usually A isa value or an interval)

o The variables X,,X,,---, X, behind the events A, A,,---,A, do not need to have the same

probability distribution but they must be independent and their distribution must depend on the
same parameter vector 4.
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¢ Definition 13.4 — The likelihood function is L(8) = H’;zlPr(Xj € A;16) and the maximum likelihood
estimate of @ is the vector that maximizes the likelihood function.

e Comments:

o Notation — Usually the likelihood function is written as L(81x,,x,,---,x,) . Because observed data
can take many forms, we will write L(€) without clarifying the conditioning values.

o Independence among events — As the events A, A,,---,A are assumed independent, the
likelihood is the probability, given a particular value of 8, of observing what was observed, since
L(6) :H’;zlpr(xj € A;10)=Pr(X, € A,X,€ A, X,€A,10).

o Theoretical — When the probabilistic model is continuous and the observed event is a point,

A; = x;, we know that Pr(Xj €A, | @) =0 and we will use the density function. The rationale for
such a procedure corresponds to interpret the observed value as being in a neighborhood of x; and
to approximate the probability Pr(x; —€ < X ; <x; +£168) by means of 2¢ f(x;16), where

f(xj | &) is the density function at x ;. Dropping out the multiplicative constants leads to use the

density f(xj | @) as the contribution to the likelihood function.

10
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Multiplicative constants that are independent of the elements of the vector € can be removed
from the likelihood function since they will not affect the maximum likelihood estimate. Removing
such constants does not change the solution but it will change the value of the likelihood.

There is no guarantee that the likelihood function has a maximum at eligible parameter values.
When maximizing the likelihood function the existence of local maxima can hide the global
maximum.

Log-likelihood — In many situations it is easier to use the log-likelihood, that is, to maximize
{(@)=InL(0)= Z';:lln(Pr(Xj €A, IH)) instead of L(@) (as the natural logarithm is a strictly
increasing function the solution is unchanged).

ln(Pr(XJ. €A, 9)) is called the individual contribution of observation j to the log likelihood.

In many situations numerical methods are needed.

11
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COMPLETE INDIVIDUAL DATA
When there is no truncation and no censoring and the value of each observation is recorded, it is easy to

write the log-likelihood function, /(6) = ijlln Jx (x;10).

e Example 13.4 — Using Data set B, determine the maximum likelihood estimate for an exponential
distribution, for a gamma distribution where « is known to equal 2, and for a gamma distribution

where both parameters are unknown.
Exponential distribution

fxl=0"e"?, x>0,0>0.

(o=" m(g"e)=3" (-ino-x6")
r@=3" (-0 +x,67)=—n6" +nx6"
(@)=0=0=—nb"+nx6” < 6=x

r@=3" (67-2x,67)=n6"(1-2x6")

As ("(@)},  =-n 072 <0 we get =X =1424.4 (same estimate as with the method of moments)

12
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Gamma distribution with o =2 - similar to the previous case

Gamma distribution with unknown parameters — numerical maximization

a-1 —x/6
fxla,@) =25 x>0, 2,6>0.

° ()
e,0) = Z’;:lln(f(xj l,6)= Z’;zl((a—mnxj —ang-x,0" ~InT(ar))

To maximize in order to a requires the derivative of InI'(«¢) which is not an explicit function (we can

obtain a solution in orderto @, 8 = x / ¢, but the problem remains). Consequently we need to use
numerical techniques.

We illustrate the procedure using Microsoft EXCEL solver and R.

13
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EXCEL

E6 - ( fe |

A B C D E F G H I
1 alfa 2
2 theta 500

3
4 loglik= -182.8027631 sum of column 1ln f£(x Jj)

7 X In £(x J)

8 27 -9.187379331 < LN (GAMMADIST (A8; $BS1; $BS2; FALSE) )
9 82 -8.186496395

10 115 -7.9142840&8

11 126 -7.84493429

12 155 -7.85579108

14
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=

Solver Parameters A B C
1 alfa 0.5561577%¢
ok e roem > theta 2561.142391
3
To: @ Max i) Min () value Of: 4 ngli]{: -162.2934031 sum
By Changing Variable Cells: o
$B51:¢8S2 6
Subject to the Constraints: 7 X_:I In £ (X_:I )
s 8 27 -6.307636437
9 82 —-6.82216e7714
S 10 115 -€.98516574
Delete 11 126 -7.030005585
Reset All
Load/Save

Then & =0.55616 and 8 =2561.14. If necessary, we can use a different starting point and/or we can

add constraints.

15
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Using R — Two among many solutions.
> x=c(27,82,115,126,155,161,243,294,340,384,457,680,855,877,974,
+ 1193,1340,1884,2558,15743)
> mean (x)
] 1424.4

[1
>
> # 1ST SOLUTION: USE FUNCTION nlm
> # As nlm minimizes a function we introduce minus the log-1lik
> minusloglikgamma=function (param, x) {
+ alpha=param[1l]; theta=paraml[2]
+ —sum (dgamma (x, shape=alpha, scale=theta, 1og=TRUE) )
+ }
> param.start=c(1l,1000) # starting values — important point
> outl=nlm(minusloglikgamma, param.start,x=x) # Options available
Warning messages:
l: In dgamma (x, shape, scale, log) : NaNs produced
2: In nlm(minusloglikgamma, param.start, x = Xx)
NA/Inf replaced by maximum positive value
>

16
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outl

Sminimum

[1] 162.2934 # Minus the log-likelihood
Sestimate

[1] 0.556156 2561.146495

Sgradient

[1] -8.273560e-05 -6.824815e-09 # Check the convergence
Scode

[1] 1 # Check the convergence
Siterations
[1] 26

>
> # 2ND SOLUTION: USE FUNCTION maxLik, LIBRARY maxLik
> # As maxLik maximizes a function we introduce the log-lik
> loglikgamma=function (param, x) {
+ alpha=param[1l]; theta=paraml[2]
+ sum (dgamma (x, shape=alpha, scale=theta, log=TRUE) )
+ }

> # param.start has already been defined

> library (maxLik)

> out2=maxLik (loglikgamma, start=param.start, x=x)

There were 50 or more warnings (use warnings() to see the first 50)

17
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> out?2

Maximum Likelihood estimation

Newton—-Raphson maximisation, 22 iterations
Return code 1: gradient close to zero
Log-Likelihood: -162.2934 (2 free parameter(s))
Estimate(s): 0.5562315 2560.365

Comments:
e Both functions are based on the Newton-Raphson method;
e We can use the gradient and the Hessian matrix to improve results;
e We can control the process changing some parameters values (tolerance, maximum number of
iterations, ...);
® Other procedures are available to maximize the log-likelihood.

18
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COMPLETE GROUPED DATA

e We must rectify the likelihood in order to consider the mass probability associated with each group.

® As before, let us assume that there are k groups and that group j, with n; observations, is limited by
values ¢;_,and c;. The likelihood function is L(6) =] " (F(c;16)= F(c;,16))" and the log likelihood

is ((0)= _n,In(F(c;10)~F(c,,16))

e Example 13.5 - From Data Set C, determine the maximum likelihood estimate of an exponential
distribution.

F(x|0)=1-¢"% F(c;10)=F(c; ,10)=e """ ="
The log-likelihood is then

0(0) = 99><1n(1—e_7500/0)+ 42><1n(e_7500/9 —e_17500/9)+---+ 3Xln(e—300000/9 —0)

Using Microsoft Excel or another numerical procedure to maximize the log-likelihood we get
6 =29720.77 and /(8) =—406.03.

Exercise: check the results using EXCEL or R

19
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TRUNCATED AND CENSORED DATA

e Censored data: Non censored observations are individual points and censored observations are grouped
data.

e Truncated data: More challenging. We must keep in mind that some values of the r.v. cannot be
observed.

e Klugman, Panjer and Willmot (Loss Models) pointed out that there are two ways to proceed but it is
important to underline that these ways correspond to two different models. Note that in both
situations we only observe the values above the truncation points.

First model — We want to estimate the distribution of the truncated values;

Second model — We want to estimate the model behind the values without truncation (more interesting
case);

e Example 13.6 - Assume the values in Data Set B had been truncated from below at 200. Using both
methods estimate the value of & for a Pareto distribution with @ =800 known. Then use the model to
estimate the cost per payment with deductibles of 0, 200 and 400.

As data has been truncated at 200 we only consider observations above 200 (14 observations)

20
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First model — Shift the data by subtracting 200. In this model we will consider that the shifted data follow a
Pareto distribution with unknown & and @ =800. The density and the log-likelihood are

o
Fxla6=800)=— 23 120,50  t@)=3" (Ina+an800—(a+HnE00+x,)
800+ x)"" = !
r(@)="+nxIn800—>"_ In(800+x,) Me)=0ea= .
o Jj=1 J

—nxIn800+ )" In(800+x))

We get & =1.348191. Then, using this setup our estimate is that, when a deductible of 200 is in
force, the cost per payment follows a Pareto distribution with & =1.348191 and 8 =800. The
expected value of a payment is 2297.59 = 800/(1.348191-1).

Because data have been shifted it is not possible to estimate the cost with no deductible.
For a deductible of 400, we have to impose a new deductible of 200 in our shifted data. The expected
cost per payment is given by (theorem 8.3):

E(X)—-E(X *200)

E(X —2001 X >200) =
1- F(200)

21
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Using Loss Models’ appendix we get

a—1
Ex)=_2 andE(XA200)=i£1—( 9 j J

a—1 a—1 200+ 6
Then
800 ( 800 j0.348191
X
_ N\
E(X 2001 X >200) = E(X)—-E(X ~200) _ 0.348191 \ 200+ 800 ~2871.90

1— F(200) ( 800 jl.348191
200+ 800

22
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Second model — The purpose is to fit a model for the original population, knowing that data were
truncated at 200. The density of the observed values is now (x> 200, & > 0)

a800”
_ 800+ x)*"! @
o(xl @.6=800) = f(x1a,6=800) _ ( z) _ 0410000[+1
1- F(2001 oz, 8 = 800) 800 (800 + x)
(800+200)”

Note that the values Xx; are the original ones (except those below 200 that are not observed).
Hey=2_(Ina+an1000—(a+1)In@00+x)))

’ n 1 n n
()= Zj_l(a+ln1000—ln(800+xj)j =E+nxln1000—zj:11n(800+xj)

n

—nxIn1000+ " In(800 +x;)

F(@)=0e " =—nxIn1000+Y " n(800+x,) & a =
o j=1 J

We get & =1.538166, i.e. the cost per payment without deductible follows a Pareto distribution
with & =1.538166 and 8 =800.

23
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The introduction of a deductible of 200 originates an expected cost per payment given by

200 200 0538166
X
E(X)—E(X ~200) 0.538166 (200+800) ~1858.16
1~ F 200 = 200 1538166 - '
(200+800j

As it is natural (we are using a different set of hypothesis), this value is different from that obtained
with the first model. Note also that we can estimate that only 0.7095=1- F (200! &, @) of the claims
are reported.

The introduction of a deductible of 400 originates an expected cost per payment given by

800 800 0.538166
X
E(X)-E(X ~400) _ 0.538166 (400+ 800)
- F(400) 00 IR ~2229.80
(400+800j

24
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Example 13.7 — Determine Pareto and gamma models for the time to death for Data Set D2.
In Data Set D2 we faced 4 different situations:

Contribution to | Meaning of x

Situation the likelihood
1 | Subjects are observed from time d=0 and died | f(x168) Time of death
at time x (observed during the period of the
study). No truncation nor censoring.
2 | Subjects are observed at time d=0 and didn’t | 1—F(x18) Time of censoring
die during the period of the study. No
truncation but censoring.
3 | Subjects are observed from time d>0 f(x18) Time of death

(truncation) and died at time x (no censoring) 1-F(d|8)

4 | Subjects are observed at time t>0 (truncation) | 1-F(x18) Time of censoring
and didn’t die during the period of the study 1-F(d16)
(censoring)

25
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It is straightforward to write the contributions to the likelihood (or to the log-likelihood). For instance:
Obs 1 - d =0 (no truncation); x=0.1 (censoring): 1—F(0.1)

Obs 4 — d =0 (no truncation); x=0.8 (no censoring): f(0.8)

Obs 31— d =0.3 (truncation); x=5 (censoring): (1—- F(5.0))/(1-F(0.3))

Obs 33 — d =1.0 (truncation); x=4.1 (no censoring): f(4.1)/(1- F(1.0))

Sometimes it is useful to get a single expression for all the situations. Using d=0 for the no truncation
situation and noting that F(018) =0 we can rewrite the contribution to the likelihood from cases 1 and 2
. f(x18) and 1-F(x18)
1-F(d|8) 1-F(d16)
assuming value 1 when the x value corresponds to a death (0 otherwise) and we write the likelihood as

IR er (I=v)xA-F(x;160)+v;x f(x;10)
Lo=11., 1-F(d,;10)

respectively (with d=0 for both cases). Then we define a dummy variable, v,

and the log likelihood as £(0)=""_ (In((1-v)x (1= F(x;10)+v;x f(x;10))~In(1-F(d,10))).

Now you can compute a solution using EXCEL or R. Exercise: Do it using EXCEL

26
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gamma model (using R).

> d=c(rep(0,30),0.3,0.7,1.0,1.8,2.1,2.9,2.9,3.2,3.4,3.9)
> x=¢(0.1,0.5,0.8,0.8,1.8,1.8,2.1,2.5,2.8,2.9,2.9,3.9,4.0,4.0,4.1,4.8,4.8,4.8,
+ rep(5.0,12),5.0,5.0,4.1,3.1,3.9,5.0,4.8,4.0,5.0,5.0)
> v=c(rep(0,3),1,rep(0,5),1,1,0,1,0,0,1,rep(0,16),1,1,rep(0,3),1,0,0)
>
> minusloglikgammal=function(theta){
+ -sum(log((1-v)*(1-pgamma(x,shape=theta[1],scale=theta[2],log=FALSE))+
+ v*dgamma(x,shape=theta[1],scale=theta[2],log=FALSE))-
+ log(1-pgamma(d,shape=theta[1],scale=theta[2],log=FALSE)))
+ }
>
> theta.start=c(3,2)
> out=nIm(minusloglikgammal,theta.start)
> out
Sminimum
[1] 28.52685
Sestimate
[1] 2.616737 3.311384
Sgradient
27
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[1] 1.026956e-05 3.390297e-06
Scode

[1]1

Siterations

[1] 14

The solution is then & =2.616737 and § =3.311384.

Pareto model

> minusloglikParetol=function(theta){
+ -sum(log((1-d)*(x+theta[2])*(-theta[1])+d*(x+theta[2])*(-theta[1]-1))-
+ theta[1]*log(1+theta[2]))
+ }
> theta.start=c(3,2)
> outPareto=nIlm(minusloglikParetol,theta.start)
Error in nim(loglikParetol, theta.start) :
non-finite value supplied by 'nim’
In addition: There were 50 or more warnings (use warnings() to see the first 50)
>
We are unable to find a solution in this set up.

28
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VARIANCE AND INTERVAL ESTIMATION

® |tis not easy to determine the variance of the maximum likelihood estimators. In most situations we
need to approximate the variance which can be done when “mid regularity conditions” are verified.

There are many ways to write those conditions.

e Theorem 13.5 — Assume that the pdf (pf in the discrete case) f(x|8) satisfies the following for @ in an

interval containing the true value (replace integrals by sums for discrete variables):

i. Inf(x180) isthree times differentiable with respect to 6.
0
ii. I 30 f(x18)dx =0 - This formula implies that the derivative may be taken outside the integral

and so we are just differentiating the constant 1 (the main idea is that we can swap the
derivation with the integration - the limits of the integral cannot be functions of 8).

2
iii. J‘% f(x18)dx =0 - This formula is the same concept for the second derivative

29
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Inf(x18)dx <0 - This inequality establishes that the indicated integral exists

—co< [ f(x16)

2

82
06

and that the expected value of the second derivative of the log likelihood is negative.

There exists a function f(x18) such that

<H(x).

3
jH(x)f(x|9)dx<oo with ja%lnf(xle)dx

This inequality guaranties that the population is not overpopulated with regards to extreme
values.

Then the following results hold:

As n — oo, the probability that the likelihood equation (L’(€) = 0) has a solution goes to 1.
As n — oo, the distribution of the mle 9n converges to a normal distribution with mean 6 and
variance such that 7(6) Var(én) — 1 where

2

P) ) ’
1(6)=-n E[aez In £(X | 9)] = nE[ﬁln F(XI 9)}

30
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o Comments to Theorem 13.5

o The quantity 7(6) is called Fisher’s information (of the entire sample = n3(8)in “Review of ...”)

| -6 -
o The second statement can be written as I n(0;1)

o The theorem assumes an i.i.d. sample. A more general version of the result can be established and
uses the log-likelihood function, that is,

J? P ?
I(Q)Z_E(aﬁz (61 Xl,Xz,---,Xn)J:E[ﬁﬁ(HI Xl,Xz,---,Xn)]

o If there is more than one parameter, the result can be generalized and the maximum likelihood
estimators will follow an asymptotic multidimensional normal distribution. 1(8) is now a matrix
with (r,s) element given by
82

00 .06,

16),, =_E[ el Xl,Xz,...,Xn)j
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o The inverse of Fisher’s information matrix is the Cramér-Rao lower bound for the variance of

unbiased estimators of @, that is to say, no unbiased estimator is asymptotically more accurate
than the maximum likelihood estimator.

o When Fisher’s information matrix depends on 6 we estimate it usingl(é). When I(é) is difficult to
obtain we can approximate it using the observed information I(é) = —H(é), i.e. using the Hessian
matrix of the log likelihood at 8 = 2

o Example 13.9 — Estimate the covariance matrix of the mle for the lognormal distribution. Then apply
this result for Data set B.

Note: When using the lognormal it is usually more adequate to take logarithms of the observed values
and to use the normal (gaussian) distribution.

n 1 = 2
L(ﬂ,0)=H;27[eXl{—(nx] zﬂ) J

j=1 ij' 20-

2
f(ﬂ,O')=Z’;:1 —lnxj—lna—ln(ﬁ)—(lnxj —z,u)

20
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Taking expected values

{57)
|
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n
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Jdo’
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Fisher’s information matrix and lower bound

%f 7l P "/ 0
A 7/on

As the information matrix depends on the parameter o we must estimate the matrix. First we estimate
L and o (for this purpose only the estimation of o is necessary)

r ( 2 (Inx, —u (

T I LLET IR A v
<a§_ ad n 1 (lnxj—ﬂ)z = lnx - )2
7R DI R e sl J

And we will use the asymptotic covariance matrix

_/

0
var(2,6)=1(2.6)" =
0'/
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Now using Data Set B we get (Note that the number of observations is too low to use an asymptotic
approximation)

> # Example 13.9 - solution following the book
> x=c(27,82,115,126,155,161,243,294,340,384,457,680,855,877,974,1193,1340,1884,2558,15743)
> n=length(x); mu=sum(log(x))/n; sig2=sum((log(x)-mu)”2)/n; sig=sqrt(sig2)
> mu; sig2; sig
[1] 6.137878
[1] 1.930456
[1] 1.389408
> |=matrix(c(n/sig2,0,0,2*n/sig2),nrow=2,byrow=TRUE)
> |
[,1] [,2]
[1,] 10.36025 0.00000
[2,] 0.00000 20.72049
> mat_V=solve(l)
> mat_V
[,1] [,2]
[1,] 0.0965228 0.0000000
[2,] 0.0000000 0.0482614
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Example 13.10 — Estimate the covariance matrix in example 13.9 using the observed information
> # example 13.10 - Following the book
> sig3=sig2*sig; sigd=sig2*sig2;
> H=matrix(c(-n/sig2,-(2/sig3)*sum(log(x)-mu),-(2/sig3)*sum(log(x)-mu),
n/sig2-(3/sigd)*sum((log(x)-mu)?2)),nrow=2,byrow=TRUE)
>H
[,1] [,2]
[1,] -1.036025e+01 -3.973669e-15
[2,] -3.973669e-15 -2.072049e+01
> matV_H=solve(-H)

> matV_H

[1] [,2]
[1,] 9.652279e-02 -1.851064e-17
[2,] -1.851064e-17 4.826140e-02
>
> #using numerical optimization
>

> minuslogliklognorm=function(theta){
+ -sum(-log(x)-log(theta[2])-0.5*log(2*pi)-0.5*(( (log(x)-theta[1]) / theta[2] )*2))
+ }
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> # Be aware of the starting point!
> # Numerical optimization could be erroneous (Hessian matrix)
> theta.start=c(6,2)
> out=nIm(minuslogliklognorm,theta.start,hessian=TRUE)
Warning messages:
1: In log(theta[2]) : NaNs produced
2: In nim(minuslogliklognorm, theta.start, hessian = TRUE) :
NA/Inf replaced by maximum positive value
> out
Sminimum
[1] 157.7139
Sestimate
[1] 6.137875 1.389408
Sgradient
[1] -2.713500e-06 -2.659279e-07
Shessian
[,1] [,2]
[1,] 10.360257841 -0.004526871
[2,] -0.004526871 20.710188098
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Scode

[1] 1

Siterations

[1] 7

> HH=outShessian

> solve(HH)

[,1]
[1,] 9.652270e-02
[2,] 2.109811e-05

Instituto Superior de Economia e Gestao

# HH is the hessian of minus the log likelihood, i.e. HH is equal to
minus the hessian of the likelihood
# inverse of HH
[,2]
2.109811e-05
4.828542e-02
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o What can we do when our interest is about a function of the parameters?

Estimation of a function of the parameters

Example: Assume that our interest, in the last couple of examples, was about the expected value of X,

thatis E(X) =exp(u + o’ /2). The point estimator is easy to obtain, using the invariance property of

the mle, and we get E(X) =exp(2 + 6> /2). What are the expected value and the (approximate)
variance of this estimator?

o Theorem 13.16 — (Delta method) Let X, = (X X2n,---,X,m)T be a multidimensional variable of

1n>
dimension k based on a sample of size n. Assume that X is asymptotically normal with mean @ and
covariance matrix X/ n, where neither 8 nor X depend on n. Let g be a function of k variables that is

totally differentiable. Let G, = g(X,,.X,,,---.X,,). Then G is asymptotically normal with mean g(6)
and variance (0g)’ £(9g)/n, where dg is the vector of the first derivatives, that is,
dg=(dg/06,,0g/936,,---,0g/36,)" and itis to be evaluated at 8, the true parameters of the original

random variable.
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o Comments:

o There are several presentations of the delta method

o When k =1, the theorem reduces to the following statement: Let 8 be an estimator of & that has
an asymptotic normal distribution with mean @ and variance o*/n. Then g(é) has an asymptotic

normal distribution with mean g (&) and variance g'(6?)2><(0'2 /n).

o Example 13.12 — Use the delta method the approximate the variance of the mle of the probability that
an observation from an exponential distribution exceeds 200. Apply this result to Data Set B.

As it is well known, the mle estimator of @ is 6 =X with E(é) =6 and Var(é) =60*/n.
We want to estimate Pr(X >200)=¢ "% = g(8)
Pr(X >200)=g(d) =2

Delta method:

2 g2 2 —400/6
Es(®)= g6 =" and Var(g(é’))“8’(0)2var(9)=(%e200’9] ANeL i
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Application to Data Set B: n=20; Estimate: 6 =1424.4
2002 e—400/1424.4

Pr(X >200)= ¢(8) = 2% —0.8690  var(e(d))= = 0.000744402
( )=5® (g( )) 20x1424.4

95% Confidence Interval: 0.8690019 ¥1.645x%x0.02728373, that is (0.8241; 0.9139)

o Example 13.13 — Construct a 95% confidence interval for the mean of a lognormal population using
Data set B. Compare this to the more traditional confidence interval based on the sample mean

Note that the sample size is too small to use asymptotic results!
Usual method
X+£1.96xs//n, i.e. 1424.4+1.96x3435.04 /~/20, that is (-81.07, 2929.87).

Note that this interval includes values that are not admissible (E(X) = g(8) > 0).

Delta method

9g
ezm (o) = exp(a+ 6% 12) he = gﬂ :[g(ﬂ,a)}
o 98 | [og(u.0)
00
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N 2 2
é’:{'ﬂ Vaf(é):§:|:o- /n } ! } (see example 13.9)
n 0 o /(2n) n 1/2
A O'_ 1 g(,U,O')
var(g(6)) = (0g)" =(0g)/n =[g(1,0) ag(m)](nj{o 1/2}{@(#,0)}
2 2
=1 7 g 0) Gg(ﬂ,c)/Z][ 8(#,0) } (O-—j(g(ﬂ,o')2+6—g(ﬂ,0')2J
n og(u,o) n 2

(149 xexp] w49
n 2 P 2

From example 13.9 we know that the mle estimates are 1=6.1379 and 6 =1.3894. Then

a2 a2 A2
vr(g(9)) = (%)X[l+%j><exp(ﬂ+%j = 280444

The 95% confidence interval is then 1215.75%1.96 x+/280444 , that is, (177.79; 2253.71)
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NON NORMAL CONFIDENCE INTERVALS
o In the previous section the confidence intervals are based on 2 assumptions:

1. The normal distribution is a reasonable approximation for the true distribution of the maximum
likelihood estimators (large samples);

2. When there is more than one parameter, the construction of separate confidence intervals is an
acceptable procedure.

o We will see an alternative procedure (the result is still asymptotic) which let us built confidence regions
to answer to point 2.

o The new procedure to define confidence intervals is based on the likelihood ratio tests (to be formally
presented in chapter 16 of Loss Models).

o Theidea is to include in the confidence interval (region) the values of @ with a greater likelihood, i.e.

our likelihood interval will be defined as {0 4(0) > c} with ¢ < K(é) to guarantee that the interval is not
empty.

o The question is: How to define ¢ in such a way that the procedure produces a 100(1 — &) % confidence

region?
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o The solution is then to define ¢ = E(é) —0.5%x g, (be aware of a typo in the book: ¢ = 70)) -0.5%q,,,

instead of the correct solution) where g, is the 1—«& quantile of a chi square distribution with degrees

of freedom equal to the number of estimated parameters. Keep in mind that this result is asymptotic.

o Example 13.14 — Use this method to construct a 95% confidence interval for the parameter of an
exponential distribution. Compare the answer to the normal approximation, using Data Set B.

Exponential distribution: /(8) = Z';Zl (— In@—x; /0) =—nln@—-nx/0and =%x.

Data Set B: n=20,x =1424.4,

Normal approximation

, n nx , n 2nx n 2nX n 2n n 6
C@)=—+—7; 1'(0)=—— ; [(0)=—E| —— = —— =—; 1(6)" ="
©) 0 6 © 0° 6’ © (92 0’ j (92 ezj 6’ ) n

The confidence interval is x ¥ 1.96><)_c/\/;, that is, (800.129; 2048.67)

Non — normal approximation

((@)=-nInx—n; q,,s =3.841 (we are estimating 1 parameter)

44



Instituto Superior de Economia e Gestao

—-nln@-nx/0=2-nlnx-n-05%x3.841<mb+x/0<Inx+1+1.9205/n

The interval is given by

which has to be solved numerically (Inx +1+1.9205/20=8.35753). Using EXCEL’s solver we get
the interval (946.788; 2285.246)

Comment: To be rigorous we need to prove that the equation In8+x/6 =Inx—-1-1.9205/n has
only 2 roots and that the inequality is strict between the roots.

Challenging question: are you able to prove that?

o Example 13.15 — In example 13.4, the mle for a gamma model for Data Set B were & =0.55616 and

0 = 2561.1. Determine a 95% confidence region for the true values.

Gamma distribution
n X n nx
o la,0)= Zjl((a'—l)lnxj —;f—alne—lnr(a)J =(@-1), _Inx -, ~nané-nl(a)

o U&,0)=-162.2934
o c=0(&0)-05%xq, =-1652889  (usinga 3
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We must solve the inequality

1227576 % (ax —1) — % —20¢In 6 -20InI'(ex) 2 -165.2889

>x=c(27,82,115,126,155,161,243,294,340,384,457,680,855,877,974,1193,1340,1884,2558,15743)
>

> minusloglikgamma=function(theta){

+ -sum(dgamma(x,shape=theta[1],scale=theta[2],log=TRUE))
+ }

>

> loglikgamma=function(a,b){

+ sum(dgamma(x,shape=a,scale=b,log=TRUE))

+ }

>

> theta.start=c(mean(x)*mean(x)/var(x),var(x)/mean(x))

> out=nIm(minusloglikgamma,theta.start,hessian=TRUE)

> out

Sminimum

[1] 162.2934
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Sestimate
[1] 0.556157 2561.146543

Sgradient
[1] -6.110668e-06 4.771822e-10
Shessian

[,1] [,2]
[1,] 82.442844018 7.808613e-03
[2,] 0.007808613 1.695060e-06
Scode
[1] 1
Siterations
[1] 35

> # Independent confidence intervals

> theta_mv=outSestimate

> invH=solve(-outShessian) # The function is minus the loglikelihood

> theta_mv_var=-diag(invH)

> linf=theta_mv-1.96*sqgrt(theta_mv_var); Isup=theta_mv+1.96*sqrt(theta_mv_var)
> linf; Isup;
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[1] 0.2686390 555.9871246

[1] 0.843675 4566.305962

>

> # Confidence region

> q=qchisq(0.05,2,lower.tail=FALSE)

> cc=-outSminimum-0.5*q # The function is minus the loglikelihood
>

> a=seq(.5*linf[1],2*Isup[1],(2*Isup[1]-.5*linf[1])/81)
> b=seq(.5*linf[2],2*Isup[2],(2*Isup[2]-.5*linf[2])/81)
>

> z=array(0,dim=c(length(a),length(b)))

> for(i in 1:length(a)) {

+ for(jin 1:length(b)) {

+  z[i,j]=loglikgamma(al[i],bl[j])

+ )

+ }

> persp(a,b,z,theta=30,phi=30,ticktype="detailed")

> contour(a,b,z,level=c(cc))
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Skip section 13.5 of Loss Models, 4™ edition

Skip chapter 14. However you are assumed to be able to deal with Maximum Likelihood estimation for
discrete random variables when the problem is similar to those examined along chapter 13!
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